Convection parameterization for
the NCEP Weather and Climate
model

Hua-Lu Pan and Jongil Han

NCEP/EMC

With help from
EMC physics team

Myong-In Lee and Sieg Schubert (NASA/GMAOQO)
Soo0-Hyun Yoo and Jae Schemm (NCEP/CPC)



Climate modeler’s interest in
convection parameterization

Maintenance of the Hadley Cell, the Walker Cell,
the prediction of ENSO, and climate response to increasing CO2
Removal of model biases
Double ITCZ

Weather in the climate models

Mid-latitude disturbances are realistic
Tropical variabilities are too weak for
synoptic scales, MJO and ENSO
Tropical cyclogenesis investigated through nested mesocale
models

Recent work using cloud resolving models
to simulate the climate

Indications are that the MJOs get stronger and the models can generate

tropical storms 2



Weather modeler’s interest in convection
parameterization

Tropical storm tracks
Tropical storm genesis
Summer precipitation over land
Predictions of meso-scale convective systems
In recent years, MJO and ENSO as well

At NCEP, the global weather model is used
for weather and climate

Parameterized convection can do the job
If
we continue to work on the problem



CFS (coupled) Simulations
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Testing with CMIP Runs (variable CO2)
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OBS is CPC Analysis (Fan and van den Dool, 2008)
CTRL is CMIP run with 1988 CO2 settings (no variations in CO2, current operations)

CO2 run is the ensemble mean of 3 NCEP CFS runs in CMIP mode
— realistic CO2 and aerosols in both troposphere and stratosphere

Processing: 25-month running mean applied to the time series of anomalies (deviations5
from their own climatologies)
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@ NWS /NCEP Last update: Maon Apr 13 2009
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PDF correction: Forecast Nino3.4 SST anomaealies from CFS
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What Needs to be Done?

« Parameterization of convection is still needed for
the next 5-10 years

 Continue to develop and improve the physical
basis for coded algorithms determining current
performance

— Improvements need to perform as well (or better) for
both weather and climate models

— Improvement areas
 Trigger
* Closure
* Cloud momentum mixing
* Cloud model



Trigger function

* Most mass-flux schemes use closure as
trigger ... Whenever the column is
unstable ‘enough’, convection starts

— Modifications to delay onset mostly use
environmental conditions such as RH
* Meso-scale modelers look at parcel
buoyancy when lifting a parcel through
Inversion
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Trigger in the GFS

 GFS uses the parcel concept to check for
level of free convection

— Simplified trigger requires lifted parcel to have
level of free convection within 150 hPa

— Often delays the onset of convection
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Phase (local time) of Maximum Precipitation (24-hour cycle)
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Diurnal Cycle of Rainfall - Ensemble Mean and Spread
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CTRL: Control run with the standard SAS scheme

EXP1: Same as CTRL but with the fixed critical CWF in time
(independent to the vertical motion)

EXP2: Same as CTRL but with the fixed relaxation time scale amplitude phase
(30 minutes)

EXP3: Same as CTRL but the convection starting level is _—>
always fixed at the first model level 5 mm/day

EXP4: Same as CTRL but the LFC muct located within 500 hPa depth
of the convection starting level
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precp 18Z-00Z - daily mean JJA CFS—test prcp 00Z-08Z - daily mean JJA CFS—test
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Closure

 Traditional closure for climate models

— Rate of adjustment of the column CAPE (or cloud
work function) to the final state

* For meso-scale models

— Final state has convective instability eliminated
(CAPE elimination)

— Moist adiabat (after accounting for liquid and/or
frozen water)

 For GFS closure

— Approaches CAPE elimination when the atmospheric
state is ‘disturbed’

— Modifies ‘climate CAPE’ with the ambient vertical
motion
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Cumulus Momentum Mixing
(CMM)

 Has a remarkable effect on tropical storm
genesis

— Without CMM

« Most of the tropical disturbances develop vorticity
centers due mostly to grid-scale heating.

* Grid-scale “resolved” convection
 Too many disturbances

— With CMM

« Parameterized convective heating is smaller

* Most important, vortex development is restricted
only to the ‘real’ storms
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Simple cloud model in SAS

The cloud model in the A-S scheme Is a simple
one. We should be able to add better physics in
It.

Currently, there is no cloud water generated
other than at the detrainment level, so

convective cloud needed in radiation Is either
made up or missing.

Cloud top level is a new issue we are studying.

A new package of deep and shallow convection
IS under testing.
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Mesoscale modeling

* How does parameterized convection (and for
that matter turbulence) work when the resolution
goes from 40 km to 4 km?

— The “convergence” problem for convective
parameterization (Arakawa)

— With the GFS trigger

 Air column in disturbed regions becomes very moist
CAPE is reduced

l.e. moist adiabat is approached

Parameterized convection plays a diminishing role
Grid-scale convection “takes over”

« Convective momentum mixing continues to exert
Influence on the intensity of the tropical storms
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Summary

Contribution of parameterized convection important until sub-4 km
resolution is reached

To continue to improve NCEP’s real time applications, convective
parameterization will continue to be developed

Climate models can benefit from better parameterized convection in next 5-
10 years

Improvement areas
— Convective trigger (+PBL)
— Convective momentum transport
— Refining physical basis for closure
— Better cloud model within the convection scheme
— A mass flux based shallow convection scheme

Approach must be physically-based
— CRMs can be useful for specific problems (e.g. CMM)
— To run at the many resolutions required, the scheme has to be physically based
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